










































































































































































































































































































































































































































































Ph.D. Preliminary Examination, 2006 

 

Mon., May 22, 2006 

 

Part I: Classical Mechanics (9:00 a.m. to 12:00 p.m.) 

 
1. A massless stiff rod of length 2L is pivoted at its 
center and constrained to move in a vertical plane by 
springs and masses at each end as shown in the accompanying 
figure. 

a.  Set up the Lagrangian L( !! && ,x,,x ) and determine the two 

equations of motion. 
b.  Calculate the eigenfrencies of the motion. 
c.  Find the normalized eigenvector corresponding to the 
largest eigenfrequency.  
 
 

  
 
 
2. A particle of mass m moves under the influence of the 
central force 
 

2
5

r

c
2 r

F != . 

 
a) Calculate the potential energy and the (fictitious) 

effective potential. 
b) Find the radius of any circular orbit in terms of the 

angular momentum. 
 
 
3. A pendulum consists of two masses connected by a very 
light rigid rod, as shown. The pendulum is free to 
oscillate in the vertical plane about a horizontal axis 

 

k 

k 

k 

m 

m 

m θ 
L L 

x 



located a distance a from ma at a distance b from mb. 
 a. Calculate the moment of inertia of the system about O. 
Find the location of the center of mass.  
b. Set up the Lagrangian and determine the equation of 
motion for the system.  
c. Take b > a and determine the frequency of oscillation 
for small angles of displacement from the vertical.  
d. Derive an exact expression for the period of the 
pendulum (|θmax| < π). 
 e. Find the minimum angular velocity which must be given 
to the system (starting at equilibrium) if it is to 
continue in rotation instead of oscillating. 
 

 
 
 
4. A mass 2m is suspended from a fixed support by a spring 
with spring constant 2k. A second mass m is suspended from 
the first mass by a spring of constant k. Find the 
equations of motion for this coupled system and determine 
the frequencies of oscillation of normal modes. Neglect the 
masses of the springs.  The equilbrium lengths of the 
springs without gravity are both zero. You must include 
gravity to determine the equilibrium positions of the 
masses. 

               



5. 

 
 

6. 

 



Ph.D. Preliminary Examination, 2006 

 

Mon., May 22, 2006 

 

Part II: Quantum Mechanics (1:00 p.m. to 4:00 p.m.) 

 

 
 

3 .Consider a particle of mass m submitted to the potential: 
 

 V(x) =     0,    if 0 § x §a 

                         +¶,    if x < 0 or x > a. 
 

| jn > are the orthonormal eigenstates of the Hamiltonian H of the system, and their 

respective eigenvalues are  
 

En = n
2p2
ħ

2
/(2ma

2
). 

 

The state of the particle at the instant t = 0 is  
 

| y(t = 0) > = a1 | j1 > + a2 | j2 > + a3 | j3 > + a4 | j4 >, 

 



where the ai are (possibly complex) normalized coefficients,  i.e., Si | ai |
2
 = 1. 

  

(a) What is the probability, when the energy of the particle in the state | y(t = 0) > is 

measured, of finding a value of the energy smaller than 3p2
ħ

2
/(ma

2
)? 

 

(b) What is the mean value of the energy, <E>, of the particle in the state | y(t = 0) >? 

(Write the answer in terms of E1 = p2
ħ

2
/(2ma

2
).) 

 

(c) Write out the state | y(t) > at a time t > 0. If no energy measurement is made at t = 0, 

do the results found in (a) and in (b) at the instant t = 0 remain valid at an arbitrary time t 

> 0? Why or why not? 

 

(d) When the energy is measured at t = 0, the result is 8ħ
2
/(ma

2
). What will be the 

probability of the same value of energy being measured at a later time t? After the energy 

is measured at t = 0, what is the probability of the particle being in the n = 2 state at a 

later time t? 
 

 

4. (a)  In quantum mechanics, when does on operator O correspond to a constant of 

motion? 

 

(b)  The Hamiltonian for a certain particle of mass m moving in a three-dimensional 

space is 

 

 H = (px
2
 + py

2
 + pz

2
)/(2m) + lx, 

 

where l is a non-zero constant. Which of the following operators x, y, z, px, py, pz are 

constants of motion? Which are not constants of motion? Justify your answers in terms of 

your discussion in (a). 
 

 

5. Consider the scattering of spinless particles of mass m and charge e in the screened 

Coulomb potential 

 

r/a
e

r

Ze
V

!=)(r .                 

 

 

(a) [40%]   Find the transition amplitude (matrix element) for a plane wave of these 

particles with non-relativistic momentum p scattering elastically from this potential into a 

plane wave with momentum p’.  Express your result in terms of q = |p – p’|/h. 

 

(b) [30%]   Describe an approximation that can be used to calculate the differential cross 

section for fast (but non-relativistic) particles.  Obtain the differential cross-section 

dσ/dΩ using this approximation.  (Do not be concerned about overall dimensionless 

constants.)  What is its range of validity? 



 

 (c) [30%]    Describe an approximation that can be used to calculate the differential 

cross section for slow particles, with no assumptions about the strength of the potential.  

What are the angular distribution and energy spectrum of the particles in this case?  (Do 

not be concerned with the normalization.)  Is there a limit in which the results of (b) 

remain applicable for low-energy scattering?  If so, what is it, and are the results of (b) 

consistent with your general expectations for the scattering of slow particles? 

 

 

6. 
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Part III: Electricity & Magnetism (9:00 a.m. to 12:00 p.m.) 

 

 

 

2. A particle of charge e is attached to a massless string 

of length L and oscillates above a semi-infinite conducting 

plane that fills the entire region below the origin, O. The 

distance from the point of attachment to the plane is D. 

(Gravity is not operating in this problem and D > L.) 

!

m, e

D

L

(t)

O

 

 

By computing the potential energy of the system to lowest 

order in the angle θ(t) (or other means), find the frequency 

of small oscillations of the charge.  

 

3. For a harmonic current density source of the form 

 

  

!  

r 
J '(

r 
x ',t) =

r 
J (

r 
x ')e

i"t
, 

 

one may show that 

 

  

!  

dP

d" avg.

=
1

T
dt

dP

d"
(t)

0

T

# =
μ 0$

2

32%2c
ˆ n & d3x'

r 
J (

r 
x ')e' ik ˆ n (

r 
x '#

2

,
 



 

for the average angular radiated power, where k = 
ω
c .  

(a) Now given 

 

  

!  

r 
J '(

r 
x ',t) = I"(x')"(y') ˆ k , 

(I is a constant current) which represents a coherent 

harmonic line source located along -d/2< z'<d/2, show that 

the average angular radiated power is 

 

! 

dP

d" avg.

=
μ 0cI

2

8#2

sin2(
kd

2
cos$)

cos2 $
sin2 $. 

 

(b) Treat the same problem in electric dipole approximation 

using the formula 

 

  

!  

dP

d" avg.

=
μ 0cI2

8# 2
ˆ n $

r 
p 

2
, 

 

where   

!  

r 
p  is the electric dipole moment constant for this 

harmonic source. Reconcile your answer with the (a) part. 
 
 
4.  a.  An inverted hemispherical bowl of radius R carries a uniform surface 

          charge density σ .  Find the potential difference between the “north pole” 

          and the center.  
 
     b.  An infinitely long cylinder, of radius R, carries a “frozen-in” magnetization, 
          M = kr2 z, where k is a constant, r is the distance from the axis and z is the  
          unit  vector in the direction of cylinder axis. Locate the all bound currents  
          and calculate the magnetic field at a point, (a) inside, (b) outside the   
          cylinder. 
 
 
5.  An infinitely long solenoid of radius a, with n turns per unit length, carries a 
current Is.  Coaxial with the solenoid, at radius b >> a, is a circular ring of wire 
with resistance R.  When the current in the solenoid is gradually decreased, a 
current Ir is induced in the ring. 
 
(a)  Find the Ir in terms of dIs/dt. 
 



(b)  Find the electric field at the surface of the solenoid due to the changing flux 
in the solenoid. 
 
(c)  Show that the magnetic field on the axis of the solenoid due to the current in 
the ring is given by 

                                 

      

!  

r 
B =

μ
o
I

r

2

b
2

b
2 + z

2( )
3

2

) 
z  , 

where z is the distance from the center of the ring. (This is essentially the B field 
on the surface of the solenoid.)  
 
 (d)  The power (I2rR) delivered to the ring must come from the solenoid. Confirm 
this by calculating the Poynting vector  at a point on the  surface of the solenoid 
and integrating it over the entire surface . 
          
 
6. A resistor is in the form of a solid cylinder of radius 
r, length L, and is made of a material with conductivity σ1.  

At the center of the resistor is a defect consisting of a 
small sphere of radius a inside which the conductivity is 
σ2.  The input and output current I  is distributed 

uniformly across the flat ends of the resistor. 
 

                 
 

 
(a) [20%] What is the resistance R0 of the resistor without 
the defect (i.e. with σ2 = σ1)? 

 
(b) [40%] Estimate the relative change ΔR/R = (R – R0)/R0 in 

the resistance due to the defect to first order in the 
relative change in the conductivity of the defect, Δσ/σ = 
(σ2 – σ1)/σ1.   (Make any assumptions needed to arrive at a 

quick but reasonable estimate.) 
 
 (c) [40%] Suppose L !  ∞ and R !  ∞, but a uniform current 
density J0 continues to flow across the ends of the 
resistor.   Calculate (exactly) the current density inside 
the spherical defect in this limit. 



Ph.D. Preliminary Examination, 2006 

 

Tues., May 23, 2006 

 

Part IV: Statistical Mechanics and Mathematical Physics 

(1:00 p.m. to 4:00 p.m.) 

 

1. In the Debye theory of solids, we have both for transverse and longitudinal waves that 

the frequency ω and wave number k are related by ω = ck. The theory extends easily to 

the propagation of spin waves (“magnons”), excitations in which the direction of 
magnetization in a ferromagnetic material propagates as a wave. In this case ω ∝ k

2
. How 

does the spin-wave energy U vary with T at low T? 
 
 

2.  For a monatomic spin-less ideal classical gas, the chemical potential μ is given by μ = 

β-1 
ln(λT

2
/v) where λT is thermal wavelength and v is volume per particle. Drive the 

chemical potential for the case where the particles have spin J. 
 

3.  Due to its spin, the electron possesses a magnetic moment µB.  Therefore, in the 

presence of a magnetic field B, an electron with momentum p has an energy dependent 

upon whether its magnetic moment is parallel or antiparallel to the magnetic field. 

a.  Treating the conduction electrons in a metal as a free electron gas, obtain an 

expression (involving integrals over Fermi-Dirac distribution functions) for the 

magnetization due to the magnetic moments of the conduction electrons, when placed in 

a magnetic field. 

b.  Evaluate this expression at absolute zero. 

c.  Plot the two density of states that enter into your calculation above and use this graph 

to discuss Pauli spin paramagnetism at 0 K. 

d.  Use your results to argue that only a fraction T/TF of the conduction electrons 

contribute to the magnetization.  Use this to explain why an external magnetic field can 

lead to the diamagnetic effect first calculated by Landau. 

 

4. According to the Rayleigh-Jeans law, the mean energy U per normal mode of black-

body radiation at a temperature T is 

U = kT. 

According to Wien’s law 



U = hω e-βhω 

a.  When is the Rayleigh-Jeans law valid?  When is Wien’s law valid? 

b.  Calculate d(1/T)/dU for both cases. 

c.  Invent an interpolation formula for d(1/T)/dU between these two limits.  Once you 

have this formula, integrate it to obtain an expression for U that is correct for any 

frequency.  (Hint:  If you choose the correct interpolation formula, this procedure 

should result in Planck’s law.) 

 
 
5. The three-dimensional Dirac delta function can be 
represented as an integral of the form: 

  

!  

"(
r 
r ) =

d

r 
k 

(2# )
3 / 2
e
i

r 
k $

r 
r 
D(

r 
k )%  

where   

!  

D(
r 
k ) is the Fourier transform of the delta function. 

a. Find   

!  

D(
r 
k ). 

b. From the integral representation of the delta function 
and the fact that the Coulomb potential   

!  

"(
r 
r ) = # e /r 

satisfies Poisson’s equation, 

  

!  

"#2$(
r 
r ) = " 4%e&(

r 
r ) 

show that the electron-electron pair potential, 

  

!  

V (
r 
r ) = " e#(

r 
r ) = e2

/r can be written in the form 

  

!  

V (
r 
r ) =

d

r 
k 

(2" )
3 / 2
e
i

r 
k #

r 
r $ V (

r 
k ) 

where  
  

!  

V (
r 
k ) =

4"e2

(2" )
3/2

k
2  

c. Prove that the Fourier transform of the screened Coulomb 

interaction 

!  

V
S
(r) = (e2 /r)e"k0r is 

  

!  

V
S
(
r 
k ) =

4"e2

(2" )
3/2

(k
2 + k0

2
)
 

by substituting the   

!  

V
S
(
r 
k ) expression into the Fourier 

integral 

  

!  

V
S
(
r 
r ) =

d

r 
k 

(2" )
3 / 2
e
i

r 
k #

r 
r $ V

S
(
r 
k ). 

and evaluating the integral (without integral tables) in 
spherical coordinates.  Choose a contour in the complex 
plane to perform the radial integration. 



(Note:  The integrand has an angular dependence that must 
be dealt with first.) 
 
 

6. A string is clamped at both ends, x = 0 and x = L.  
Assuming small amplitude vibrations, we find that the 
amplitude u(x,t) satisfies the wave equation 

!  

" 2u

"x 2
=
1

c
2

" 2u

" t 2
 

where c is the wave velocity. 
a. Find the normal modes of vibration.  Give the general 

solution for an arbitrary initial state (t = 0) of 
vibration. 

b. Consider the case when the string is set in motion by a 

sharp blow at x = a.  Thus, 

!  

u(x,0) = 0 and 

!  

"u

" t
(x,0) = Lv

0
#(x $ a).  

Solve the wave equation subject to these initial 
conditions. 

c. Find the transverse velocity of the string as a function 
of time. 

d. The Green’s function G(x,x’;k) is often used when several 
vibrating string problems are to be solved.  Find the 

Green’s function for the operator 

!  

" 2

"x 2
# k 2 subject to the 

same boundary conditions at x = 0 and x = L. 

 



5

Problem 5

Use Green’s function to solve the following initial ordinary di↵erent equation

x00 + 9x = h(t), x(0) = 1, x0(0) = 1,

where h(t) = 0 for t < ⇡
2 , and h(t) = sin(t) for t > ⇡

2 .



6

Problem 6

a) Determine the radius of convergence of the power series

1X

n=1

n!

nn
xn

b) Using the calculus of residues, evaluate the integral,

Z 1

�1

cos(mx)

(x+ a)2 + b2
dx

where a is real, b is real and positive, and m is an integer.
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